Scroll Top

Aqueous SPPS

Reflecting recent work in the

The growing interest in synthetic peptides has prompted the development of viable methods for their sustainable production. Currently, large amounts of toxic solvents are required for peptide assembly from protected building blocks, and switching to water as a reaction medium remains a major hurdle in peptide chemistry. Researchers from Sulfotools GmbH and TU Darmstadt report an aqueous solid-phase peptide synthesis strategy that is based on a water-compatible 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting group. This approach enables peptide assembly under aqueous conditions, real-time monitoring of building block coupling, and efficient postsynthetic purification. The procedure for the synthesis of all natural and several non-natural Smoc-protected amino acids is described, as well as the assembly of 22 peptide sequences and the fundamental issues of SPPS, including the protecting group strategy, coupling and cleavage efficiency, stability under aqueous conditions, and crucial side reactions.


Kolmar Lab item


Publication Information

Skip to toolbar