Yeast CICLOPPS
Reflecting recent work in the Knudsen Group
DNA-encoded libraries hold great potential for discovering small, cyclized peptides with drug potential. Split-Intein Circular Ligation of Peptides and Proteins, SICLOPPS, is a well-established method for in vivo selection of cyclic peptides targeting specific intracellular components. However, the method has mainly been used in prokaryotic cells. In contrast, selection studies performed directly in eukaryotic cells allow for the identification of cyclic peptides promoting a functional outcome, without the need to define a specific cellular target.
Researchers in the Knudsen Group at the University of Aarhus, Denmark, published in Biochemistry, report the construction of a Saccharomyces cerevisiae-specific SICLOPPS library of 80 million members, via careful optimization of several steps to increase the size of the library. Individual library members were shown to be correctly expressed and processed in yeast. High-throughput sequencing was conducted on the randomized primer used for library construction and the pure yeast SICLOPPS library isolated from Escherichia coli.
A distinct guanine insertion bias was observed in the peptide-encoding, randomized sequence, which was primarily attributed to the degenerate primer used to introduce the randomized sequence. Moreover, high-throughput sequencing was performed on the library before and after the induction of cyclic peptide expression in yeast. Importantly, expression of the SICLOPPS library in S. cerevisiae caused only a marginal further sequence bias.
This work from the Knudsen Group paves the way for selection studies using a large and diverse library to identify cyclic peptides of therapeutic interest that promote a specific phenotypic outcome in eukaryotic organisms, with yeast representing a beneficial model system due to its high transformation efficiency.