Lab of the Month – The Craik Group
The Lab
The Craik Group, based at the Institute for Molecular Bioscience (IMB) at The University of Queensland, is an interdisciplinary team advancing peptide and protein science with a special focus on cyclic, disulfide-rich scaffolds such as cyclotides. Our lab brings together expertise in synthetic peptide chemistry, molecular biochemistry and pharmacology, cell biology, and plant biology to create a dynamic environment that encourages creativity, collaboration, and continuous learning.
Led by Professor David J. Craik AO, FAA, FRS—who also directs the national Centre for Innovations in Peptides and Protein Science (CIPPS)—the group develops next-generation therapeutics and eco-friendly peptide technologies. We foster a close-knit community of postdoctoral researchers, graduate and master’s students, research assistants, and professional staff. Exchanges and lab visits are encouraged, and we celebrate scientific and personal milestones together in a culture that values inclusivity, mentorship, and global collaboration.
Our mission is to harness the structural power of peptide scaffolds to solve pressing problems in health, agriculture, and biotechnology—pushing beyond traditional methods with elegant, nature-inspired solutions.
The Craik Group works at the nexus of organic synthesis, biochemistry, molecular and plant biology to design ultra-stable peptide tools and therapeutic leads. We decode natural biosynthetic pathways and re-engineer them to produce peptides with enhanced stability, selectivity, and delivery properties.
Reimagining Cyclotides
Cyclotides are small peptides with a continuous circular backbone and interlocking disulfide bonds that confer exceptional stability to heat and digestion. By “grafting” bioactive epitopes into the cyclotide framework, we create potent, durable leads for applications ranging from neuromodulation to autoimmune disease—demonstrating that cyclic scaffolds can overcome long-standing limitations in peptide drug design.
Therapeutics in Plants
Having decoded the plant machinery that natively produces cyclotides, we reprogram easy-to-grow crops to express therapeutic peptides—envisioning accessible, sustainable delivery modes (from brewed teas to edible produce). This green biotechnology approach aims to lower cost barriers and decentralize peptide manufacturing.
From Venoms to Medicines
Venoms are rich libraries of receptor-precise, disulfide-stabilized peptides. We discover and re-engineer conotoxins and other venom-derived peptides (including gympietides from the Australian stinging tree) as selective probes and drug leads, particularly for pain and neuropharmacology.
CIPPS: Discover • Decode • Develop
Through the Centre for Innovations in Peptides and Protein Science (CIPPS), we collaborate across fifteen labs at six Australian universities to transform discoveries in peptide and protein science into technologies for health, agriculture, and industry—while inspiring future scientists through education and outreach.
Selected References
-
Koehbach, J.; Muratspahić, E.; Ahmed, Z. M.; White, A. M.; Tomašević, N.; Durek, T.; Clark, R. J.; Gruber, C. W.; Craik, D. J. Chemical synthesis of grafted cyclotides using a “plug and play” approach. RSC Chemical Biology 2024, 5 (6), 567–571.
-
Wang, C. K.; Gruber, C. W.; Cemazar, M. A.; Siatskas, C.; Tagore, P.; Payne, N.; Sun, G.; Wang, S.; Bernard, C. C.; Craik, D. J. Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chemical Biology 2014, 9 (1), 156–163.
-
Getz, J. A.; Cheneval, O.; Craik, D. J.; Daugherty, P. S. Design of a cyclotide antagonist of neuropilin-1 and -2 that potently inhibits endothelial cell migration. ACS Chemical Biology 2013, 8 (6), 1147–1154.
-
Eliasen, R.; Daly, N. L.; Wulff, B. S.; Andresen, T. L.; Conde-Frieboes, K. W.; Craik, D. J. Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. Journal of Biological Chemistry 2012, 287 (48), 40493–40501.
-
Gilding, E. K.; Jackson, M. A.; Nguyen, L. T. T.; Hamilton, B. R.; Farquharson, K. A.; Ho, W. L.; Yap, K.; Hogg, C. J.; Belov, K.; Craik, D. J. Hijacking of N-fixing legume albumin-1 genes enables the cyclization and stabilization of defense peptides. Nature Communications 2024, 15 (1), 6565.
-
Gilding, E. K.; Jami, S.; Deuis, J. R.; Israel, M. R.; Harvey, P. J.; Poth, A. G.; Rehm, F. B. H.; Stow, J. L.; Robinson, S. D.; Yap, K.; Brown, D. L.; Hamilton, B. R.; Andersson, D.; Craik, D. J.; Vetter, I.; Durek, T. Neurotoxic peptides from the venom of the giant Australian stinging tree. Science Advances 2020, 6 (38), eabb8828.
-
Clark, R. J.; Fischer, H.; Nevin, S. T.; Adams, D. J.; Craik, D. J. The synthesis, structural characterization, and receptor specificity of the α-conotoxin Vc1.1. Journal of Biological Chemistry 2006, 281 (32), 23254–23263.
-
Clark, R. J.; Fischer, H.; Dempster, L.; Daly, N. L.; Rosengren, K. J.; Nevin, S. T.; Meunier, F. A.; Adams, D. J.; Craik, D. J. Engineering stable peptide toxins by means of backbone cyclization: stabilization of the α-conotoxin MII. Proceedings of the National Academy of Sciences 2005, 102 (39), 13767–13772.
-
Johansen-Leete, J.; Ullrich, S.; Fry, S. E.; Frkic, R.; Bedding, M. J.; Aggarwal, A.; Ashhurst, A. S.; Ekanayake, K. B.; Mahawaththa, M. C.; Sasi, V. M. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chemical Science 2022, 13 (13), 3826–3836.
-
Palombi, I. R.; Lawrence, N.; White, A. M.; Gare, C. L.; Craik, D. J.; McMorran, B. J.; Malins, L. R. Development of antiplasmodial peptide–drug conjugates using a human protein-derived cell-penetrating peptide with selectivity for infected cells. Bioconjugate Chemistry 2023, 34 (6), 1105–1113.
-
Lawrence, N.; Handley, T. N. G.; de Veer, S. J.; Harding, M. D.; Andraszek, A.; Hall, L.; Raven, K. D.; Duffy, S.; Avery, V. M.; Craik, D. J.; Malins, L. R.; McMorran, B. J. Enhancing the intrinsic antiplasmodial activity and improving the stability and selectivity of a tunable peptide scaffold derived from human platelet factor 4. ACS Infectious Diseases 2024, 10 (8), 2899–2912.
-
Gare, C. L.; Palombi, I. R.; White, A. M.; Chavchich, M.; Edstein, M. D.; Lock, A.; Avery, V. M.; Craik, D. J.; McMorran, B. J.; Lawrence, N.; Malins, L. R. Exploring the utility of cell-penetrating peptides as vehicles for the delivery of distinct antimalarial drug cargoes. ChemMedChem 2025, 20 (2), e202400637.
-
Trinh, N.; Bhuskute, K. R.; Varghese, N. R.; Buchanan, J. A.; Xu, Y.; McCutcheon, F. M.; Medcalf, R. L.; Jolliffe, K. A.; Sunde, M.; New, E. J.; Kaur, A. A coumarin-based array for the discrimination of amyloids. ACS Sensors 2024, 9 (2), 615–621.
-
Engelhardt, D.; Nordberg, P.; Knerr, L.; Malins, L. R. Accessing therapeutically-relevant multifunctional antisense oligonucleotide conjugates using native chemical ligation. Angewandte Chemie International Edition 2024, 63 (49), e202409440.
-
Padva, L.; Zimmer, L.; Gullick, J.; Zhao, Y.; Sasi, V. M.; Schittenhelm, R. B.; Jackson, C. J.; Cryle, M. J.; Crüsemann, M. Ribosomal pentapeptide nitration for non-ribosomal peptide antibiotic precursor biosynthesis. Chem 2025, 11 (6).
-
Padhi, C.; Zhu, L.; Chen, J. Y.; Huang, C.; Moreira, R.; Challis, G. L.; Cryle, M. J.; van der Donk, W. A. Biosynthesis of biphenomycin-like macrocyclic peptides by formation and cross-linking of ortho-tyrosines. Journal of the American Chemical Society 2025, 147 (27), 23781–23796.
-
Robinson, S. D.; Deuis, J. R.; Touchard, A.; Keramidas, A.; Mueller, A.; Schroeder, C. I.; Barassé, V.; Walker, A. A.; Brinkwirth, N.; Jami, S. Ant venoms contain vertebrate-selective pain-causing sodium channel toxins. Nature Communications 2023, 14 (1), 2977.
-
Tran, H. N. T.; Budusan, E.; Saez, N. J.; Norman, A.; Tucker, I. J.; King, G. F.; Payne, R. J.; Rash, L. D.; Vetter, I.; Schroeder, C. I. Evaluation of peptide ligation strategies for the synthesis of the bivalent acid-sensing ion channel inhibitor Hi1a. Organic Letters 2023, 25 (24), 4439–4444.
-
Duggan, N. M.; Saez, N. J.; Clayton, D.; Budusan, E.; Watson, E. E.; Tucker, I. J.; Rash, L. D.; King, G. F.; Payne, R. J. Total synthesis of the spider-venom peptide Hi1a. Organic Letters 2021, 23 (21), 8375–8379.
-
Jayamanna Mohottige, M. W.; Juhász, A.; Nye-Wood, M. G.; Farquharson, K. A.; Bose, U.; Colgrave, M. L. Beyond nutrition: exploring immune proteins, bioactive peptides, and allergens in cow and Arabian camel milk. Food Chemistry 2025, 467, 142471.
-
Hogg, C. J.; Edwards, R. J.; Farquharson, K. A.; Silver, L. W.; Brandies, P.; Peel, E.; Escalona, M.; Jaya, F. R.; Thavornkanlapachai, R.; Batley, K. Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial. Nature Ecology & Evolution 2024, 8 (7), 1311–1326.
A Conversation with Professor David J. Craik
Q: Your laboratory is internationally recognized for discovering cyclotides. What drew you to these molecules?
A: Cyclotides are remarkable: small peptides tied into a continuous circular backbone and stabilized by three interlocking disulfide bonds. Their knot-like architecture makes them heat- and protease-resistant yet biologically active—ideal scaffolds for therapeutic design.
Q: How does the Craik Group integrate disciplines to study and apply these peptides?
A: We combine peptide synthesis, molecular biology, biochemistry, and plant science. This mix lets us design peptides in the lab, understand how plants make them, and then reprogram that machinery for new purposes—fueling creativity and translational impact.
Q: What does “therapeutics in plants” look like in practice?
A: If plants can produce stable, bioactive peptides, they can serve as mini pharmaceutical factories. We’ve decoded the biosynthetic steps and now redirect them to make therapeutic cyclotides—envisioning affordable, sustainable access via everyday foods and beverages.
Q: How do your venom-to-drug projects connect with the lab’s peptide focus?
A: Venoms are nature’s precision libraries. By understanding disulfide-rich venom peptides—such as conotoxins or gympietides—we can engineer selective probes and potential therapeutics for pain and neurological disorders.
Q: What role does CIPPS play in your broader vision?
A: CIPPS unites diverse expertise across Australia under “discover, decode, develop,” building a pipeline from nature’s peptides to deployable technologies in health, agriculture, and industry—while elevating education and public engagement.
Q: What advice do you have for young researchers entering peptide science?
A: Be curious and courageous. Cross boundaries between chemistry, biology, and biotechnology—breakthroughs often happen at the interfaces. And enjoy the privilege of discovery.